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A B S T R A C T

Recent reports suggest that increased human population size, decreased negative selection pertaining

to some phenotypes and associated genotypes and a possibly increased de novo mutation burden for

newborns that relates to paternal age at conception are contributing to an expansion of human genetic

diversity. Some of this diversity can be expected to contribute to disease. Because all of the preceding

diversity-enhancing factors are to a significant degree consequences of cultural developments, it can be

argued that the future clinical burden of the human population will be shaped in part by a human

evolutionary trajectory substantially influenced by culturally mediated effects on the number of muta-

tions in the gene pool and on the intensity of selection on some of the phenotypes associated with new

genetic variants.
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Several recent studies have added, or at least high-

lighted, a twist to the rather familiar conception of

human evolution and this new variation on the

standard theme may have substantial implications

for both biomedical research and clinical medicine.

Two of these studies [1, 2], published this past

July, determined the nucleotide sequences of thou-

sands or hundreds of human protein-coding genes

in thousands of people. What their data revealed

was that there were many rare (frequency <0.5%)

genetic variants, most of which were previously

unknown and relatively localized geographically

or ethnically. These mutations were enriched

among individuals with diagnosable medical

conditions.

Although there may always be some holdouts, es-

pecially among non-experts and non-scientists,

most biomedical scientists and biologists recognize

that humans have not stopped evolving and con-

tinue to be subject to selection and to change at a

population level, however slowly or subtly. In terms

of both genotypes [3–5] and phenotypes [6], there is

growing evidence for human evolution in response

to selection.
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The authors of both of the recent studies on the

prevalence of rare genetic variants cited above

inferred that many of the rare variants they described

were surviving in the human population in part be-

cause selection against certain types of functional

deficits was diminished in recent decades in com-

parison with the past. Examples of medical advances

that have saved many lives and likely permitted the

generation of offspring who would not otherwise

have been born include blood and marrow trans-

plantation for pediatric lymphoid malignancies and

vaccines against pediatric pathogens capable of

causing mortality. Since 1971, over a million individ-

uals have received hematopoietic cell transplants,

generally for otherwise fatal diseases [7]. A signifi-

cant proportion of these recipients were of repro-

ductive age or younger. The implementation of

routine immunization for diphtheria, mumps, per-

tussis and tetanus resulted in a greater than 99%

reduction in mortality from these infectious diseases

between 1940 and 2004 [8]. If instead we consider a

disease directly associated with mutations at a sin-

gle locus, such as cystic fibrosis (CF), the improve-

ment in mortality over the past 40 years is also highly

significant. For example, in the UK, in the period

from 1968 to 1970, approximately half of the popu-

lation of males or females succumbed to the disease

by the time of entry into reproductive competency,

but by the early 1990s, the majority of UK CF patients

could be expected to survive well into their repro-

ductive years [9]. Similar data have been obtained

in Australian CF patients [10]. There are undoubtedly

a number of other potentially fatal conditions

associated with one or more alleles at a single pre-

dominant genetic locus where improvements in care

have increased survival and reproductive success.

In part as a consequence of the contributions of

public health measures and advances in medical

care, an increased pace of population growth has

been sustained for many generations and has made

available many new genetic variants for which selec-

tion has had insufficient time to act irrespective of

any attenuation of selection intensity. The enor-

mously expanded human population of recent dec-

ades has also meant that there are many more

opportunities for genomes to sample what might

be regarded as the envelope of human genetic pos-

sibility [11]. It is sobering to realize that, starting with

any particular human genome, the number of pos-

sible genomes one mutational step away is three

raised to roughly the three billionth power, a number

staggeringly larger than estimates for the number of

atoms in the universe (which generally cluster

around 1079 to 1080), a reasonable gold standard

for impressive magnitudes [12].

Another even more recent study [13] found that

the number of new mutations in offspring is strongly

correlated with the age of the father at the time of

conception. This correlation helps to explain the

substantial correlation between the occurrence

of de novo mutation and the incidence of autism

[14–16]. According to Kong et al., the average new-

born has 60 new small-scale mutations, but the pa-

ternal contribution can vary over a wide range from

about 25 for a 20-year-old father to 65 for a

40-year-old father with a fairly constant 15 new mu-

tations contributed by the mother. Available evi-

dence suggests that up to 10% of new point

mutations are expected to be deleterious [17], so it

is expected that, on average, each newborn could

have as many as six new potentially disease-causing

genetic alterations.

One far-reaching implication of these new results

is that personalized medicine pertaining to some

conditions will likely face greater obstacles than pre-

viously believed. Establishing the causal connec-

tions between rare variants found in geographically

circumscribed populations and diseases or other

medically relevant phenotypes will be much more

difficult, requiring much larger study sample sizes

for example, than has been the case for more com-

mon variants that occur in multiple populations on

different continents. Furthermore, once such causal

links are established, developing relevant genetically

guided diagnostic tests or therapies could be more

challenging than has generally been assumed.

Thus, the crux of the current thesis is (i) due to

cultural developments such as technologically

advanced medical care, public health measures

and increased food availability, there are many more

human genomes subject to mutation than there

otherwise would be and (ii) many new variants that

in a context with less medical technology, public

health infrastructure and food availability would be

much more likely to disappear quickly now persist in

the human population. So cultural developments

have made it possible for more human genetic vari-

ants to arise and, by relaxing selection on many of

the variant-associated phenotypes, for more of these

variants to persist in the human genome pool. A

culturally mediated increase in mutation rate may

further enhance this process but is not essential

for its general direction.
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Of course, strong interactions between cultural

evolution and biological evolution have been noted

before, and the empirical evidence supporting such

interactions is consistent with theoretical analyses

[18]. A now widely cited and well-accepted example

of cultural influence on human evolution is the effect

of dairying on the frequency of alleles that favor the

adult persistence of lactase expression in the intes-

tines [19]. In this study, Tishkoff et al. reported evi-

dence implicating several independently originating

variants associated with lactase persistence in

European and African populations due to positive

selection.

The new data, in contrast, reveal the persistence

and possible spread of variants primarily due to a

lack of selection resulting from cultural factors.

These results further support the argument that

cultural and biological forms of evolution are better

regarded as a single integrated process than as sep-

arate influences on human populations [18, 20].

Physicians who understand these realities will be

better able to understand the eternally changing

spectrum of human disease and disability.
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